CMP 338: Third Class

HW 2 solution

Conversion between bases

The TINY processor

Abstraction and separation of concerns
Circuit design big picture

Moore’s law and chip fabrication cost

Performance
What does to measure?
Processor performance and execution time
The CPUtime equation

For next class: HW 3: review 1.6; read 1.10, 2.1-2.3

HW 2: Basic Processor Model

In two or three sentences of your own words
define, describe, or discuss the following
components of the basic processor model:

® NG A WN

Register
Regqister File

. () multiplexer (MUX)
. A(B)Bus
. ALU — Arithmetic / Logical Unit

Bus
Program Counter (PC)
Instruction Register (IR)

Basic Computer Model

ROM

DMA controller

T _ Address bus
SYStE BuUs Data bus
Control bus
IODCU IODCU IODCU

—Came

keyboard

Basic Processor Model

registers
MUX PI'S
ALU
MUX

PC e

HW 2 : Processor Components

Register

Memory containing one word (32 bits) or one
double word (64 bits) of data.

Register File

A collection of (usually 32) consecutively
numbered (0 .. 31) registers.

() multiplexer (MUX)

Selects a specified register to feed to the A (B)
bus.

HW 2 : Processor Components

A (B) Bus

Takes the value from the
register determined by its MUX and copies it to

one of the inputs of the ALU.

ALU — Arithmetic / Logical Unit

Performs an arithmetic (+, —, etc.) operation or a
logical (bitwise and, or, etc.) operation of the
values given it on the A and B buses and puts

the result on the C bus.

HW 2 : Processor Components

Bus

Can take a value from the ALU and place itin a
specified register. Also, an extension of the
System bus onto the processor. Used to fetch
instructions into the IR, /oad a specified register
with the value at a specified address in main
memory, and store the value in a specified
register into a specified address in main memory.

HW 2 : Processor Components

Program Counter (PC)

Instruction Address Register contains the
address in main memory of the next instruction to
be executed.

Instruction Register (IR)

Contains the instruction currently being
executed. Determines what operations are
performed by other components of the processor
during the execution.

Basic Processor Model

registers
MUX PI'S
ALU
MUX

PC e

The TINY Computer

registers
00000000
%%
MUX
MUX

PC

ALU

IR

OCOZN

MAR

MDR

0x0000

Oxffff

Integers in Different Bases

Base 10 (decimal — ten fingers)
4129, = 4*10° + 1*10° + 2*10" + 9*10°

Base 2 (binary — two fingers)
1011, = 1*2° + 0*2° + 1*2" + 1*2°

Base 16 (hexadecimal — sixteen fingers)
A3F8, = 10*16° + 3*16° + 15*16" + 8*16°

Conversion between base 2 and base 16 is easy!
Ox A3F8 =0b 1010 0011 1111 0100

Four Hundred and Thirty Seven

437, 110110101, 1B,

4-10° =100 1-2% = 256 1-16% = 256
+3-10'= 30| +1-27=128 |+11-16" =128
+7-10°= 7| +0:2°= O |+ 516°= 5
+1-:2°= 32
+1:2*= 16
+0-2°= 0
+1:22= 4
+0:2'= 0
+1-20= 1

Base 2 < Base 10

From base 2 to base 10

Add the power of 2 corresponding to each 1
Example: 01100100, = 2° + 2° +22 =64 + 32 + 4 =100,

From base 10 to base 2
Express number as sum of distinct powers of 2
209, =128+64+16+1=12"+12°+1-2°+ 1-2°
Add zero times the missing powers of 2
209, = 1:27+ 1:26 + 0:25 + 1:244 0:23 + 0:22 + 0:2" + 1-20

Write coefficients from highest to lowest power of 2
209,, = 11010001,

Powers of 2

128

256
512
1024
2048
4096
8192
16384
32968

Base 16 <« Base 2

From base 16 to base 2

Replace each hex digit with its 4-bit binary equivalent
6E30AC58,, = 01101110 00001010110001011000,

From base 2 to base 16

Pad left with 0 until length is multiple of 4
11001001001111011, = 00011001001001111011,

Replace consecutive sequences of 4 bits with hex digit
00011001 01111011, =1927B,_

o 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0001 0010 0011 o100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

First 16 Non Negative Integers

Decimal
0 8
1 9
2 10
3 11
4 12
5 13
6 14
7 15

Binary
0000 1000
0001 1001
0010 1010
0011 1011
0100 1100
0101 1101
0110 1110
o111 1111

Hexadecimal

0

N OO A A WON -

T m ©O O W P> ©

8 Great Computer Architecture Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories
Dependability via redundancy

Separation of Concerns

Interface

Boundary — between objects or systems
Protocol - rules for interaction between parties
Contract - formalized expectations

Distribution of Labor
User (consumer) ignores implementation
Provider (producer) ignores application

Instruction Set Architecture ISA
Between hardware and software

Application Program Interface API
Between application program and operating system

AP]

Interface Map

ISA

What Happens to Your Program

Computer Design — The Big Picture

A computer is one big sequential circuit

Abstract into discrete sequential components
Combinational circuits + memory + clock

Combinational circuit design

1. Specify semantics
Black Box input and output

Truth Table (Input determines output)

2. Truth table — Boolean formula
3. Minimize boolean formula (Karnaugh Maps)

4. Boolean formula — combinational circuit

Synchronous Sequential Circuit

Logic Circuit

State
(Memory)

Clock

The TINY Computer

registers
00000000
%%
MUX
MUX

PC

ALU

IR

OCOZN

MAR

MDR

0x0000

Oxffff

Black Box Logic Design

Combinational circuit
Output determined by input

Design process

1. Specify semantics
Black Box input and output
Truth Table (input determines output)

2. From truth table to boolean formula

3. Minimize boolean formula (optional)
Boolean algebra

Karnaugh maps
4. From boolean formula to circuit

Two Way Multiplexer Design

A e
B — Black Box — X
S —

Informal semantics:
X=A—ijfS=0
X=B—ifS=1

Two Way Multiplexer Truth Table

S A B X A —

O O O 0 B— muzlt-iv;?gxer —X

0 010 S—

O 1 0 1

0 1 1 1 not S and A and not B, or
not S and A and B, or

1 0 0 0 SandnotAand B, or

1 0 1 1 Sand Aand B

1 1 0 0 X = SAB + SAB + SAB + SAB

1 1 1 1 = SA + SB

Two Way Multiplexer Circuit

2-way multiplexer

X=SA +SB

8 Great Computer Architecture Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories
Dependability via redundancy

Moore's “Law”

Moore’s Observation (1965)
gates per chip doubles (about) every two years

Compute power o< # gates per chip

What to do with increasing compute power?
Until about 2000, faster (and bigger) uniprocessors

Since 2003, more (simpler) processors per chip
Exploiting increasing parallelism isn’'t easy

Are we the end of Moore’s Law?
Seems to be slowing down, can’t continue forever
However, it has been pronounced dead before

Moore's Law

Processor Performance over Time

Alpern's Law

Exponential growth is ultimately unsustainable

1200
1000 @

800

600 W 1024/2*n
(O] ¢ 1024/2*n + 0.1

Alpern's Law

Exponential growth is ultimately unsustainable

10000

1000 @
(O]
(O]

m
100 =

10)

1 @ B 1024/2"n
i 1024/2"n + 0.1

* o
0.1 l.‘Ooooo
]

]
0.01 -
]

]
0]

0
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n

Chip Fabrication

Blank
Silicon ingot wafers

: 20 to 40
() Slicer @ processing steps

4

Tested dies Tested Patterned wafers
oo wafer P
Bond die to D%%DDED Waf A
ond die : er \ ™,
package LOOmOO | Dicer | fester | T %
o000 E— ," i
OO \ —
.,
Packaged dies Tested packaged dies

.

000 et _ OOK | shipto
) (o]] tester E O customers

Intel Core |7 Wafer

Integrated Circuit Fabriction Costs

Cost per wafer
Dhes per walfer X yeld

Cost perdie =

Wafer ares
Die area

Dves per wafer =

1
(1 + {Defects per area ¥ Die area/ Ejljl:r
11.8 inch (300mm) patterned wafer
~325 (20.7 x 10.5 mm) dies per wafer
~23% of dies are defective (yield = ~0.77)

If each wafer costs $20,000
what is the fabrication cost of a chip (die)?

Yield

Understanding Performance

From qualitative to quantitative analysis
Statistical tools
Average and weighted average

Performance equations
Relative performance
CPU time equation
Amdahl’s law
Performance metrics (what to measure)

What does “performance” mean?

Performance Metrics

Different measures of airplane “performance™?
Speed (mph) ?
Range (miles) ?
Capacity (passengers) ?
Throughput (passengers miles per hour) ?

e [
(miles) (lﬂ Iﬂi-) (passengers x m.p.h.)

Boeing 777 375 4630 228,750
Boeing 747 470 4150 286,700
BAC/Sud Concorde | 132 4000 135{] 178,200
Douglas DC-8-50 146 8720 544 79,424

Airplane Performance Metrics

|] | [[
Boeing 777 | Bowing 777 |
Bowing 747 | Bowing 747 |
BAC/Sud | BACSud
Concorde Concorda
Douglas Douglas DC-
e -0 | | | -
o i06 200 300 400 9S00 a 000 4000 &00D S00D 10000
|E|Pu|-=|1l.'|cr-ﬂ-upn|:i':r] 0 Cruing Range {miles) |
] | |
Bosing 777 | Bowsing 777 |
Bosing 747 I Boeing 747 : I
BALC/5ud I BAC/ Sud]
Concorde Concorda
Douglas Douglas DC-
DC-8-50 —|—| ssp |
o S00 10060 1500 o 100000 200000 00000 400000
| O Crulsing Speed (mph) | | 2 Passengers x mph

Computer Performance Metrics

Response (execution) time (seconds)
CPU__+1/O__

time

Throughput (tasks per hour)

Availability (percent) o

MTTF — Mean Time To Failure (years)
MTTR — Mean Time To Repair (minutes)

Execution energy (joules)
Throughput cost (tasks per hour per dollar)

Response Time Performance

Definition

Performance, = .1 : P, = 1
ExecutionTime , E,

Better performance mean shorter execution time

Relative performance

Xis ntimes as fast as Y if and only if
Pr By
"R TE

Y takes n times as long as X to execute

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if

Performance A Execution timeB
_ —_ n

Performancey Execution time ,

Thus the performance ratio is

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance
A —15

Performancey

means that

Performance
A — Perﬂ:lrmam:eE
1.5

Processor Performance

Program execution time = CPU_ _ + 1/0_
CPU,__ will be our key metric of processor performance

We will return to I/O,__ at the end of this course
CPU. = # instructions ¢ (average) instruction_

instruction, = (average) cycles per instruction ¢ cycle,

cycle, = # seconds 1

me cycle clock

rate

clock . measured in Hertz (cycles per second)
ate

nstructions ~ #cycles #seconds

CPU. : . ;
execution Instruction cycle

time

[execution) =

T —

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

Figure 1.15 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

Instructions v Clock cycles v Seconds

Time = Seconds/Program = :
Program Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CP1I that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

Performance Equations

Definition of performance

: P T
relative performance: 5 -7

y X

performance: P_= I

CPU time equation

#nstructions ~ #cycles #seconds
execution 1nstruction cycle

T .y execution) =

Amdahl's law

fraction effected - T,

T, = . + fraction not effected - T, ,
improvement

CPU. _Relative Performance

. # Instructions #cycles # seconds
T .| execution) = - -

execution 1nstruction cycle

T, = #instructions, - CPI, - cycleTime,

_ # mstructions , - CPI

1
= cycleTime =
clockRate Y clockRate
Py, T, #imstructions, - CPI, - cycleTime,
P, T, #instructions, - CPI, - cycleTime,

instructions, - CPI, - clockRate
mstructions , - CPI , - clockRate,

