

CMP 338: Third Class

HW 2 solution
Conversion between bases
The TINY processor
Abstraction and separation of concerns
Circuit design big picture
Moore’s law and chip fabrication cost
Performance

What does to measure?
Processor performance and execution time
The CPUtime equation

For next class: HW 3; review 1.6; read 1.10, 2.1-2.3

HW 2: Basic Processor Model

In two or three sentences of your own words
define, describe, or discuss the following
components of the basic processor model:

1. Register
2. Register File
3. A (B) multiplexer (MUX)
4. A (B) Bus
5. ALU — Arithmetic / Logical Unit
6. C Bus
7. Program Counter (PC)
8. Instruction Register (IR)

Basic Computer Model

IODCU . . .IODCU

disk

display

keyboard

RAM

IODCU
Processor

System Bus

ROM
DMA controller

Address bus
Data bus
Control bus

Basic Processor Model

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

registers

PC IR

HW 2 : Processor Components

Register
Memory containing one word (32 bits) or one
double word (64 bits) of data.

Register File
A collection of (usually 32) consecutively
numbered (0 .. 31) registers.

A (B) multiplexer (MUX)
Selects a specified register to feed to the A (B)
bus.

HW 2 : Processor Components

A (B) Bus
Takes the value (or its complement) from the
register determined by its MUX and copies it to
one of the inputs of the ALU.

ALU — Arithmetic / Logical Unit
Performs an arithmetic (+, –, etc.) operation or a
logical (bitwise and, or, etc.) operation of the
values given it on the A and B buses and puts
the result on the C bus.

HW 2 : Processor Components

C Bus
Can take a value from the ALU and place it in a
specified register. Also, an extension of the
System bus onto the processor. Used to fetch
instructions into the IR, load a specified register
with the value at a specified address in main
memory, and store the value in a specified
register into a specified address in main memory.

HW 2 : Processor Components

Program Counter (PC)
Instruction Address Register contains the
address in main memory of the next instruction to
be executed.

Instruction Register (IR)
Contains the instruction currently being
executed. Determines what operations are
performed by other components of the processor
during the execution.

Basic Processor Model

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

registers

PC IR

The TINY Computer

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

MAR
0x0000
0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0xffff

MDR

Z
N
C
O

registers
00000000

$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

PC IR

Integers in Different Bases

Base 10 (decimal — ten fingers)

4129
10

 = 4*103 + 1*102 + 2*101 + 9*100

Base 2 (binary — two fingers)

1011
2
 = 1*23 + 0*22 + 1*21 + 1*20

Base 16 (hexadecimal — sixteen fingers)
A3F8

16
 = 10*163 + 3*162 + 15*161 + 8*160

Conversion between base 2 and base 16 is easy!

0x A3F8 = 0b 1010 0011 1111 0100

Four Hundred and Thirty Seven

437
10

110110101
2

1B5
16

 4·102 = 100
+ 3·101 = 30
+ 7·100 = 7

 1·28 = 256
+ 1·27 = 128
+ 0·26 = 0
+ 1·25 = 32
+ 1·24 = 16
+ 0·23 = 0
+ 1·22 = 4
+ 0·21 = 0
+ 1·20 = 1

 1·162 = 256
+ 11·161 = 128
+ 5·160 = 5

 Base 2 ↔ Base 10

From base 2 to base 10
Add the power of 2 corresponding to each 1

Example: 01100100
2
 = 26 + 25 +22 = 64 + 32 + 4 = 100

10

From base 10 to base 2
Express number as sum of distinct powers of 2

209
10

 = 128 + 64 + 16 + 1 = 1∙27 + 1∙26 + 1∙24 + 1∙20

Add zero times the missing powers of 2
209

10
 = 1∙27 + 1∙26 + 0∙25 + 1∙24 + 0∙23 + 0∙22 + 0∙21 + 1∙20

Write coefficients from highest to lowest power of 2
209

10
 = 11010001

2

Powers of 2

28 256

29 512

210 1024

211 2048

212 4096

213 8192

214 16384

215 32968

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

 Base 16 ↔ Base 2

From base 16 to base 2
Replace each hex digit with its 4-bit binary equivalent

6E30AC58
16

 = 01101110001100001010110001011000
2

From base 2 to base 16
Pad left with 0 until length is multiple of 4

11001001001111011
2
 = 00011001001001111011

2

Replace consecutive sequences of 4 bits with hex digit
00011001001001111011

2
 = 1927B

16

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

First 16 Non Negative Integers

Decimal

0 8

1 9

2 10

3 11

4 12

5 13

6 14

7 15

Binary

0000 1000

0001 1001

0010 1010

0011 1011

0100 1100

0101 1101

0110 1110

0111 1111

Hexadecimal

0 8

1 9

2 A

3 B

4 C

5 D

6 E

7 F

8 Great Computer Architecture Ideas

Design for Moore’s Law

Use abstraction to simplify design

Make the common case fast

Performance via parallelism

Performance via pipelining

Performance via prediction

Hierarchy of memories

Dependability via redundancy

Separation of Concerns

Interface
Boundary – between objects or systems
Protocol – rules for interaction between parties
Contract – formalized expectations

Distribution of Labor
User (consumer) ignores implementation
Provider (producer) ignores application

Instruction Set Architecture ISA
Between hardware and software

Application Program Interface API
Between application program and operating system

Interface Map

API

ISA

What Happens to Your Program

Computer Design – The Big Picture

A computer is one big sequential circuit
Abstract into discrete sequential components

Combinational circuits + memory + clock

Combinational circuit design
1. Specify semantics

Black Box input and output

Truth Table (Input determines output)

2. Truth table → Boolean formula
3. Minimize boolean formula (Karnaugh Maps)

4. Boolean formula → combinational circuit

Synchronous Sequential Circuit

Combinational
Logic Circuit

Input Output

State
(Memory)

Clock

The TINY Computer

A
bus

B
bus

 ALU

C
Bus

B
MUX

A
MUX

 C
 MUX

SYSTEM BUS

MAR
0x0000
0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

0xffff

MDR

Z
N
C
O

registers
00000000

$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F

PC IR

Black Box Logic Design

Combinational circuit
Output determined by input

Design process
1. Specify semantics

Black Box input and output
Truth Table (input determines output)

2. From truth table to boolean formula
3. Minimize boolean formula (optional)

Boolean algebra
Karnaugh maps

4. From boolean formula to circuit

Two Way Multiplexer Design

Informal semantics:
X = A — if S = 0
X = B — if S = 1

Black Box

S

B

A

X

Two Way Multiplexer Truth Table

2-way
multiplexer

S
B
A

X

S A B X
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

not S and not A and not B, or
not S and not A and not B, or
not S and not A and not B, or
not S and not A and not B

X = SAB + SAB + SAB + SAB
X = SA + SB

Two Way Multiplexer Circuit

X = SA + SB

2-way multiplexer
S

B

A

X

8 Great Computer Architecture Ideas

Design for Moore’s Law

Use abstraction to simplify design

Make the common case fast

Performance via parallelism

Performance via pipelining

Performance via prediction

Hierarchy of memories

Dependability via redundancy

Moore’s “Law”

Moore’s Observation (1965)
gates per chip doubles (about) every two years
Compute power µ # gates per chip

What to do with increasing compute power?
Until about 2000, faster (and bigger) uniprocessors
Since 2003, more (simpler) processors per chip

Exploiting increasing parallelism isn’t easy

Are we the end of Moore’s Law?
Seems to be slowing down, can’t continue forever
However, it has been pronounced dead before

Moore’s Law

Processor Performance over Time

Alpern's Law

Exponential growth is ultimately unsustainable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1000

1200

1024/2^n

1024/2^n + 0.1

n

Alpern's Law

Exponential growth is ultimately unsustainable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0

0.01

0.1

1

10

100

1000

10000

1024/2^n

1024/2^n + 0.1

n

Chip Fabrication

Intel Core I7 Wafer

Integrated Circuit Fabriction Costs

11.8 inch (300mm) patterned wafer
~325 (20.7 x 10.5 mm) dies per wafer
~23% of dies are defective (yield = ~0.77)
If each wafer costs $20,000

what is the fabrication cost of a chip (die)?

Understanding Performance

From qualitative to quantitative analysis

Statistical tools

Average and weighted average

Performance equations

Relative performance

CPU time equation

Amdahl's law

Performance metrics (what to measure)

What does “performance” mean?

Performance Metrics

Different measures of airplane “performance”?
Speed (mph) ?

Range (miles) ?

Capacity (passengers) ?

Throughput (passengers miles per hour) ?

Airplane Performance Metrics

Computer Performance Metrics

Response (execution) time (seconds)

CPU
time

 + I/O
time

Throughput (tasks per hour)

Availability (percent)

MTTF — Mean Time To Failure (years)

MTTR — Mean Time To Repair (minutes)

Execution energy (joules)

Throughput cost (tasks per hour per dollar)

 . . .

MTTF
MTTF+MTTR

Response Time Performance

Definition

Better performance mean shorter execution time

Relative performance

X is n times as fast as Y if and only if

Y takes n times as long as X to execute

PerformanceX ≡ 1
ExecutionTimeX

PX ≡ 1
EX

n =
PX
PY

=
EY
EX

Relative Performance

Processor Performance

Program execution time = CPU
time

 + I/0
time

CPU
time

 will be our key metric of processor performance

We will return to I/O
time

 at the end of this course

CPU
time

 = # instructions • (average) instruction
time

instruction
time

 = (average) cycles per instruction • cycle
time

cycle
time

 =

clock
rate

 measured in Hertz (cycles per second)

CPU time(execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

seconds
cycle

= 1
clock rate

Performance Equations

Definition of performance

CPU time equation

Amdahl's law

performance: P x ≡
1
T x

relative performance:
P x
P y

=
T y
T x

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

T new =
fraction effected ⋅T old

improvement
+ fraction not effected ⋅T old

 CPU
time

 Relative Performance

T X = # instructionsX ⋅CPI X ⋅ cycleTimeX

T X =
instructionsX ⋅CPI X

clockRateX

P X
PY

=
T Y
T X

=
instructionsY⋅CPI Y⋅cycleTimeY
instructionsX ⋅CPI X ⋅cycleTimeX

P X
PY

=
T Y
T X

=
instructionsY ⋅CPI Y ⋅clockRateX
instructionsX ⋅CPI X ⋅clockRateY

T CPU (execution) = # instructions
execution

⋅ # cycles
instruction

⋅ # seconds
cycle

cycleTime = 1
clockRate

